340 research outputs found

    A genome-wide linkage scan for body mass index on Framingham Heart Study families

    Get PDF
    BACKGROUND: Genome-wide scan data from a community-based sample was used to identify the genetic factors that affect body mass index (BMI). BMI was defined as weight (kg) over the square of height (m), where weight and height were obtained from the first measurement available between the ages of 40 and 50 years. RESULTS: Significant familial correlations were observed in mother:father (spouse) relative pairs and in all relative pairs examined except parent:daughter pairs. Single-point sib-pair regression analysis provided nominal evidence for linkage (p < 0.05) of loci to BMI at 23 markers. Multi-point sib-pair regression analysis provided nominal evidence for linkage to BMI at 42 loci on 12 chromosomes. Empirical p-values showed results consistent with the multi-point results; all but three of the loci identified by multi-point analysis were also significant. CONCLUSION: The largest regions of nominally significant linkage were found on chromosomes 2, 3, and 11. The most significant evidence for linkage was obtained with markers D2S1788, D2S1356, D2S1352, D3S1744, and D11S912 from multi-point sib-pair single-trait regression analysis. Our results are in agreement with some of the recently published reports on BMI using various data sets including the Framingham Heart Study data

    The Twin Research Registry at SRI International

    Get PDF
    The Twin Research Registry (TRR) at SRI International is a community-based registry of twins established in 1995 by advertising in local media, mainly on radio stations and in newspapers. As of August 2012, there are 3120 twins enrolled; 86% are 18 or older (mean age 44.9 years, SD 16.9) and 14% less than 18 years of age (mean age 8.9 years, SD 4.5); 67% are female, and 62% are self-reported monozygotic. More than 1375 twins have participated in studies over the last 15 years in collaboration with the University of California Medical Center in San Francisco, the University of Texas MD Anderson Cancer Center, and the Stanford University School of Medicine. Each twin completes a registration form with basic demographic information either online at the TRR website or during a telephone interview. Contact is maintained with members by means of annual newsletters and birthday cards. The managers of the TRR protect the confidentiality of twin data with established policies; no information is given to other researchers without prior permission from the twins and all methods and procedures are reviewed by an Institutional Review Board. Phenotypes studied thus far include those related to nicotine metabolism, mutagen sensitivity, pain response before and after administration of an opioid, and a variety of immunological responses to environmental exposures including second-hand smoke and vaccination for seasonal influenza virus and varicella zoster virus. Twins in the TRR have participated in studies of complex, clinically-relevant phenotypes that would not be feasible to measure in larger samples

    Genomic regions linked to alcohol consumption in the Framingham Heart Study

    Get PDF
    BACKGROUND: Pedigree, demographic, square-root transformed maximum alcohol (SRMAXAPD) and maximum cigarette (MAXCPD) consumption, and genome-wide scan data from the Framingham Heart Study (FHS) were used to investigate genetic factors that may affect alcohol and cigarette consumption in this population-based sample. RESULTS: A significant sister:sister correlation greater than spouse correlation was observed for MAXCPD only. Single-point sib-pair regression analysis provided nominal evidence for linkage of loci to both SRMAXAPD and MAXCPD consumption traits, with more significant evidence of linkage to SRMAXAPD than to MAXCPD. One genomic region, chr9q21.11, exhibits significant multi-point sib-pair regression to SRMAXAPD. CONCLUSION: SRMAXAPD exhibits greater evidence for genetic linkage than does MAXCPD in the FHS sample. Four regions of the genome exhibiting nominal evidence for linkage to SRMAXAPD in the FHS sample correspond to regions of the genome previously identified as linked to alcoholism or related traits in the family data set ascertained on individuals affected with alcohol dependence known as COGA

    Identification of susceptibility loci for complex diseases in a case-control association study using the Genetic Analysis Workshop 14 dataset

    Get PDF
    Although current methods in genetic epidemiology have been extremely successful in identifying genetic loci responsible for Mendelian traits, most common diseases do not follow simple Mendelian modes of inheritance. It is important to consider how our current methodologies function in the realm of complex diseases. The aim of this study was to determine the ability of conventional association methods to fine map a locus of interest. Six study populations were selected from 10 replicates (New York) from the Genetic Analysis Workshop 14 simulated dataset and analyzed for association between the disease trait and locus D2. Genotypes from 45 single-nucleotide polymorphisms in the telomeric region of chromosome 3 were analyzed by Pearson's chi-square tests for independence to test for association with the disease trait of interest. A significant association was detected within the region; however, it was found 3 cM from the documented location of the D2 disease locus. This result was most likely due to the method used for data simulation. In general, this study showed that conventional case-control association methods could detect disease loci responsible for the development of complex traits

    Linkage analysis of the GAW14 simulated dataset with microsatellite and single-nucleotide polymorphism markers in large pedigrees

    Get PDF
    Recent studies have suggested that a high-density single nucleotide polymorphism (SNP) marker set could provide equivalent or even superior information compared with currently used microsatellite (STR) marker sets for gene mapping by linkage. The focus of this study was to compare results obtained from linkage analyses involving extended pedigrees with STR and single-nucleotide polymorphism (SNP) marker sets. We also wanted to compare the performance of current linkage programs in the presence of high marker density and extended pedigree structures. One replicate of the Genetic Analysis Workshop 14 (GAW14) simulated extended pedigrees (n = 50) from New York City was analyzed to identify the major gene D2. Four marker sets with varying information content and density on chromosome 3 (STR [7.5 cM]; SNP [3 cM, 1 cM, 0.3 cM]) were analyzed to detect two traits, the original affection status, and a redefined trait more closely correlated with D2. Multipoint parametric and nonparametric linkage analyses (NPL) were performed using programs GENEHUNTER, MERLIN, SIMWALK2, and S.A.G.E. SIBPAL. Our results suggested that the densest SNP map (0.3 cM) had the greatest power to detect linkage for the original trait (genetic heterogeneity), with the highest LOD score/NPL score and mapping precision. However, no significant improvement in linkage signals was observed with the densest SNP map compared with STR or SNP-1 cM maps for the redefined affection status (genetic homogeneity), possibly due to the extremely high information contents for all maps. Finally, our results suggested that each linkage program had limitations in handling the large, complex pedigrees as well as a high-density SNP marker set

    Performance of high-throughput DNA quantification methods

    Get PDF
    BACKGROUND: The accuracy and precision of estimates of DNA concentration are critical factors for efficient use of DNA samples in high-throughput genotype and sequence analyses. We evaluated the performance of spectrophotometric (OD) DNA quantification, and compared it to two fluorometric quantification methods, the PicoGreen(® )assay (PG), and a novel real-time quantitative genomic PCR assay (QG) specific to a region at the human BRCA1 locus. Twenty-Two lymphoblastoid cell line DNA samples with an initial concentration of ~350 ng/uL were diluted to 20 ng/uL. DNA concentration was estimated by OD and further diluted to 5 ng/uL. The concentrations of multiple aliquots of the final dilution were measured by the OD, QG and PG methods. The effects of manual and robotic laboratory sample handling procedures on the estimates of DNA concentration were assessed using variance components analyses. RESULTS: The OD method was the DNA quantification method most concordant with the reference sample among the three methods evaluated. A large fraction of the total variance for all three methods (36.0–95.7%) was explained by sample-to-sample variation, whereas the amount of variance attributable to sample handling was small (0.8–17.5%). Residual error (3.2–59.4%), corresponding to un-modelled factors, contributed a greater extent to the total variation than the sample handling procedures. CONCLUSION: The application of a specific DNA quantification method to a particular molecular genetic laboratory protocol must take into account the accuracy and precision of the specific method, as well as the requirements of the experimental workflow with respect to sample volumes and throughput. While OD was the most concordant and precise DNA quantification method in this study, the information provided by the quantitative PCR assay regarding the suitability of DNA samples for PCR may be an essential factor for some protocols, despite the decreased concordance and precision of this method

    A regression model for risk difference estimation in population-based case-control studies clarifies gender differences in lung cancer risk of smokers and never smokers

    Get PDF
    BACKGROUND: Additive risk models are necessary for understanding the joint effects of exposures on individual and population disease risk. Yet technical challenges have limited the consideration of additive risk models in case-control studies. METHODS: Using a flexible risk regression model that allows additive and multiplicative components to estimate absolute risks and risk differences, we report a new analysis of data from the population-based case-control Environment And Genetics in Lung cancer Etiology study, conducted in Northern Italy between 2002-2005. The analysis provides estimates of the gender-specific absolute risk (cumulative risk) for non-smoking- and smoking-associated lung cancer, adjusted for demographic, occupational, and smoking history variables. RESULTS: In the multiple-variable lexpit regression, the adjusted 3-year absolute risk of lung cancer in never smokers was 4.6 per 100,000 persons higher in women than men. However, the absolute increase in 3-year risk of lung cancer for every 10 additional pack-years smoked was less for women than men, 13.6 versus 52.9 per 100,000 persons. CONCLUSIONS: In a Northern Italian population, the absolute risk of lung cancer among never smokers is higher in women than men but among smokers is lower in women than men. Lexpit regression is a novel approach to additive-multiplicative risk modeling that can contribute to clearer interpretation of population-based case-control studies

    cis sequence effects on gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics) provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in <it>cis </it>on gene expression (<it>cis </it>sequence effects) in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting <it>cis </it>sequence effects and the proportion of gene expression variation explained by <it>cis </it>sequence effects using three different analytical approaches, and compared our results to the literature.</p> <p>Results</p> <p>We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of <it>cis </it>sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning) to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p < 0.05) association with gene expression. Using the literature as a "gold standard" to compare 14 genes with data from both this study and the literature, we observed 80% and 85% concordance for genes exhibiting and not exhibiting significant <it>cis </it>sequence effects in our study, respectively.</p> <p>Conclusion</p> <p>Based on analysis of our results and the extant literature, one in four genes exhibits significant <it>cis </it>sequence effects, and for these genes, about 30% of gene expression variation is accounted for by <it>cis </it>sequence variation. Despite diverse experimental approaches, the presence or absence of significant <it>cis </it>sequence effects is largely supported by previously published studies.</p

    Pharmacotherapy for smoking cessation:effects by subgroup defined by genetically informed biomarkers

    Get PDF
    BACKGROUND: Smoking cessation therapies are not effective for all smokers, and researchers are interested in identifying those subgroups of individuals (e.g. based on genotype) who respond best to specific treatments. OBJECTIVES: To assess whether quit rates vary by genetically informed biomarkers within pharmacotherapy treatment arms and as compared with placebo. To assess the effects of pharmacotherapies for smoking cessation in subgroups of smokers defined by genotype for identified genome-wide significant polymorphisms. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group specialised register, clinical trial registries, and genetics databases for trials of pharmacotherapies for smoking cessation from inception until 16 August 2016. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that recruited adult smokers and reported pharmacogenomic analyses from trials of smoking cessation pharmacotherapies versus controls. Eligible trials included those with data on a priori genome-wide significant (P andlt; 5 and#215; 10-8) single-nucleotide polymorphisms (SNPs), replicated non-SNPs, and/or the nicotine metabolite ratio (NMR), hereafter collectively described as biomarkers. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. The primary outcome was smoking abstinence at six months after treatment. The secondary outcome was abstinence at end of treatment (EOT). We conducted two types of meta-analyses- one in which we assessed smoking cessation of active treatment versus placebo within genotype groups, and another in which we compared smoking cessation across genotype groups within treatment arms. We carried out analyses separately in non-Hispanic whites (NHWs) and non-Hispanic blacks (NHBs). We assessed heterogeneity between genotype groups using Tand#178;, Iand#178;, and Cochrane Q statistics. MAIN RESULTS: Analyses included 18 trials including 9017 participants, of whom 6924 were NHW and 2093 NHB participants. Data were available for the following biomarkers: nine SNPs (rs1051730 (CHRNA3); rs16969968, rs588765, and rs2036527 (CHRNA5); rs3733829 and rs7937 (in EGLN2, near CYP2A6); rs1329650 and rs1028936 (LOC100188947); and rs215605 (PDE1C)), two variable number tandem repeats (VNTRs; DRD4 and SLC6A4), and the NMR. Included data produced a total of 40 active versus placebo comparisons, 16 active versus active comparisons, and 64 between-genotype comparisons within treatment arms.For those meta-analyses showing statistically significant heterogeneity between genotype groups, we found the quality of evidence (GRADE) to be generally moderate. We downgraded quality most often because of imprecision or risk of bias due to potential selection bias in genotyping trial participants. Comparisons of relative treatment effects by genotypeFor six-month abstinence, we found statistically significant heterogeneity between genotypes (rs16969968) for nicotine replacement therapy (NRT) versus placebo at six months for NHB participants (P = 0.03; n = 2 trials), but not for other biomarkers or treatment comparisons. Six-month abstinence was increased in the active NRT group as compared to placebo among participants with a GG genotype (risk ratio (RR) 1.47, 95% confidence interval (CI) 1.07 to 2.03), but not in the combined group of participants with a GA or AA genotype (RR 0.43, 95% CI 0.15 to 1.26; ratio of risk ratios (RRR) GG vs GA or AA of 3.51, 95% CI 1.19 to 10.3). Comparisons of treatment effects between genotype groups within pharmacotherapy randomisation armsFor those receiving active NRT, treatment was more effective in achieving six-month abstinence among individuals with a slow NMR than among those with a normal NMR among NHW and NHB combined participants (normal NMR vs slow NMR: RR 0.54, 95% CI 0.37 to 0.78; n = 2 trials). We found no such differences in treatment effects between genotypes at six months for any of the other biomarkers among individuals who received pharmacotherapy or placebo. AUTHORS' CONCLUSIONS: We did not identify widespread differential treatment effects of pharmacotherapy based on genotype. Some genotype groups within certain ethnic groups may benefit more from NRT or may benefit less from the combination of bupropion with NRT. The reader should interpret these results with caution because none of the statistically significant meta-analyses included more than two trials per genotype comparison, many confidence intervals were wide, and the quality of this evidence (GRADE) was generally moderate. Although we found evidence of superior NRT efficacy for NMR slow versus normal metabolisers, because of the lack of heterogeneity between NMR groups, we cannot conclude that NRT is more effective for slow metabolisers. Access to additional data from multiple trials is needed, particularly for comparisons of different pharmacotherapies.</p
    • …
    corecore